Vehicles elèctrics per incrementar l'ús de renovables a la xarxa elèctrica

Movilidad sostenible en los servicios urbanos

Col·legi Oficial d'Enginyers Industrials de Catalunya

Víctor Cardador Delegado Barcelona

24 de Maig de 2011

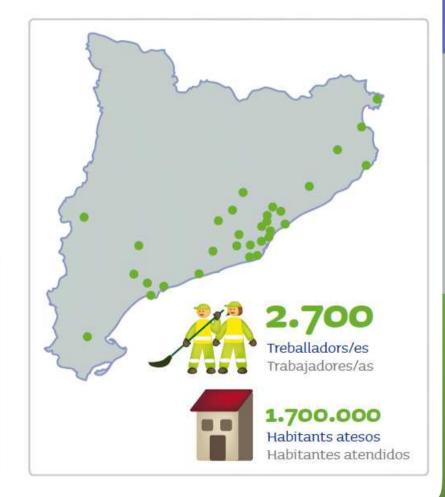
¿Quién es URBASER?

Recollida i tractament de residus Recogida y tratamiento de residuos

Neteja urbana Limpieza urbana



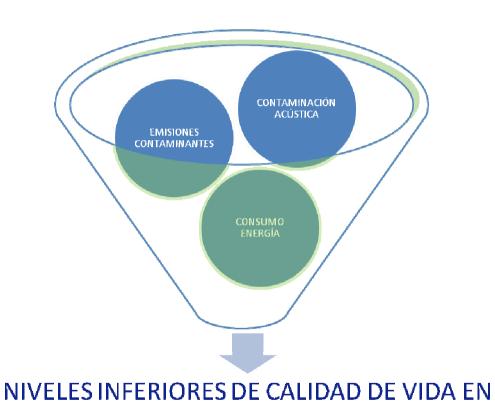
Manteniment d'àrees verdes Mantenimiento de áreas verdes



Gestió de l'aigua Gestión del agua

Presencia Global

Urbaser en BCN

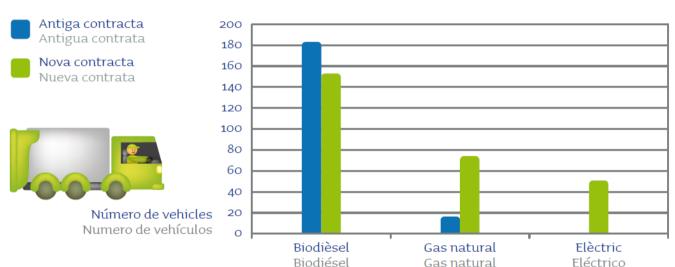

Urbaser en BCN cada día

9000 contenedores 6200 papeleras 410 km calle limpiados

500 t residuos 150000 t/año 7 centros de trabajo 850 Personas 285 vehículos

Servicio a 360.000 ciudadanos

¿Qué soportan nuestras ciudades?



LAS ZONAS URBANAS

Apuesta por la innovación

Vehículos de Urbaser en BCN

Punto de partida: ¿Por qué vehículos eléctricos?

Movilidad convencional

Movilidad eléctrica

- + Consumo energía
- + Contaminación acústica
- + Emisiones

+ Calidad de vida en las ciudades

> + Eficiencia energética

- Emisiones CO₂
 - Emisiones sonoras

Puntos clave:

- Autonomía
- Emisiones
- Eficiencia Energética
- La recarga de los vehículos
- Mantenimiento
- Coste y amortización de los vehículos y las estaciones de recarga

Vehículo monofásico (Piaggio)

Vehículo trifásico (Fiat Ducato)

Vehículo híbrido (Mercedes Econic)

Autonomía:

- La autonomía en los vehículos de servicios urbanos llega hasta 75 Km.
- Esta autonomía supone entre 1 y 3 jornadas de trabajo, en función del servicio.

La conducción eficiente aumenta la autonomía hasta un 25%

Emisiones de CO₂

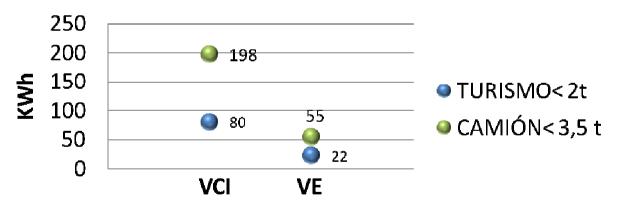
Para vehículos de combustión interna:

Consumo diario aprox. de gasoil por vehículo igual a 10 litros Factor de emisión igual a 2,7kg CO₂ por litro Emisión diaria equivalente por vehículo 27 kg CO₂

Para vehículos eléctricos:

Consumo medio de electricidad por carga diaria entre 20 i 30 KWh Emisión equivalente del mix energía eléctrica estatal igual a 0,386 kg CO₂ /KWh

Ahorro de emisiones de CO₂:


Una media de más de 17 kg de CO₂ por vehículo y servicio. Efectuando unos 450 servicios al año representa 7.800 kg de CO₂ por vehículo y año. Lo que representa que para una flota de 50 VE de las anteriores características, se consigue un ahorro anual de emisiones de CO₂ de **390 t anuales.**

Ahorro de emisión de 8 t de CO₂ por vehículo al año

Eficiencia Energética:

- Rendimiento de un 85% frente al 30% de un motor de combustión.
- Consumo de un 70% menos de energía.

Comparativa consumo energético

El éxito o el fracaso de las flotas de vehículos eléctricos pasa por un buen sistema de recarga, que debe ser eficiente, fiable, adaptativo y completamente monitorizable:

- Monitorización del estado de la instalación eléctrica y de la carga de los vehículos
- Control total del proceso
- Registro de datos eléctricos, consumos, corriente, tensión etc.
- Control de potencia de la instalación
- Señalización y alarmas
- Histórico de datos

Equipamiento del Sistema

- Cuadro General de Distribución con diversos equipamientos.
- Filtro Activo de armónicos (50A, 400V).
- Estaciones de recarga de vehículos (monofásicos y trifásicos).
- Sistema de supervisión centralizado mediante Power Studio Scada.

Estación recarga vehículos monofásicos

Estación recarga vehículos trifásicos

Mantenimiento

Baterías:

Problema: Humedad

• 14 batery packs (3%) = 12.000€

•30 MUX (136%) y 3 UM (14%) = 20.000€

Solución: Protección de la humedad

Cargadores:

Problema: Vibraciones y humedad

•11 cargadores (27%) = 21.000€

Solución: Instalación de "silentblocks" y protección de la humedad.

"Inverters", embragues (PAR motor) y otros: 11.000€

Coste y Amortización:

MENOR DE 2 t MENOR DE 3,5 t

	VCI	VE	VCI	VE
INVERSIÓN	12.000€	28.000 €	18.000€	65.000 €
SUBVENCIÓN	-	-4.000 €	-	- 7.000 €
CONSUMO (Km)	0,12€	0,04 €	0,21€	0,07 €
DISTANCIA TOTAL (Km)	150.000	150.000	285.000	285.000
TOTAL COSTE	30.000€	30.000€	78.000€	78.000 €

La movilidad eléctrica para algunos tipos de vehículos en los entornos urbanos es económicamente viable

Conclusiones:

- La movilidad eléctrica en los entornos urbanos ya es una realidad viable técnica y económicamente.
- Las nuevas tendencias sitúan a los servicios urbanos como pieza clave en la trasformación de las entidades locales en municipios inteligentes (smart cities).

V2G

- En una ciudad como BCN, existen del orden de 500 vehículos pertenecientes a flotas cautivas de servicios medioambientales municipales susceptibles de ser eléctricos.
- Solo en el caso de URBASER BCN tenemos 50
 vehículos eléctricos con una capacidad de carga de
 25 kWh por vehículo, es decir, 1'25 MWh recargada
 en la tarifa supervalle disponible para usar o para
 devolver a la red cuando esto sea posible.

V2G

- En toda España el nº de vehículos de flotas municipales de servicios medioambientales que podrían ser eléctricos es aproximadamente se sitúa entre las 20.000-25.000 unidades. Lo que representa un tercio de lo que espera el Ministerio para todo el 2011.
- Con una capacidad de carga de 25 kWh por vehículo alcanzaríamos una carga total 562 MWh disponible para utilizar o devolver a la red.

