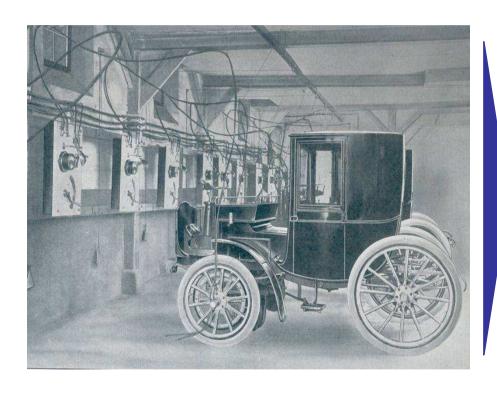
Projectes demostratius i primeres experiències amb mobilitat elèctrica Experiència d'Endesa


Santiago Cascante

XIX Century

XXI Century

- 1 Background Evolution & Standards
- 2 Tradeoff Analysis
- 3 Endesa Infrastructure Options
- 4 Endesa projects

1

Background – Evolution & Standards

Key Notes: EV charging technology is changing very fast Global standards are needed to reduce risk investment

Background

Paris MotorShow 2008

1. Background

Paris MotorShow 2010

Background

Geneva MotorShow 2011

Background

Geneva MotorShow 2011

Industrials de Catalunya

Standards

- 61851
- FOCUS GROUP EC MANDATE
- Chademo

Berlin meetings 2008

Standards

AC Standardization in IEC 62196-2 and SAE J1772™

Type 3 Type 1 Type 2 1- phase 1 to 3 phase 1 to 3 phase **CHAdeMo System**

China

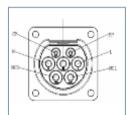
IEC 62196-3 **SAE J1772 NA**

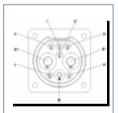
CHAdeMo

DC

AC and DC Connector:

DC


AC+DC Combo



AC

Standardisation recommendation: Mode 3 charging

- Mode 3 is a safer and more reliable option to charge an EV in all available locations and should be the preferred long-term infrastructure solution.
- To facilitate EV market penetration, a transitory phase, depending on the market take-up, should be allowed in which existing infrastructure can be used in a safe way.
- Mode 2 charging (a Mode 3 vehicle charging at an existing socket with an ICCB) is an example of safe charging and should be allowed during the transitory phase at least in private locations.
- The same applies to other safe charging cases with existing Mode 1 FVs.

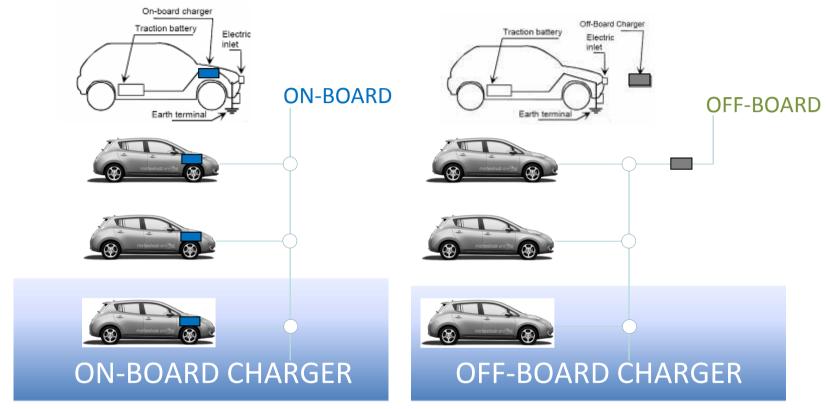
Source: eurelectric

2

Tradeoff Analysis

Key Note:

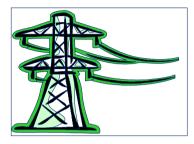
Power electronic and Storage Technologies are the key player for EVs and for SmartGrid solutions.


EV Charging methods: power levels, timing & location

Power nomination	Power in kW	Power in Amps	Recharge range/hour[Recharge range/hour	Location e.g.
Normal	1-Phase AC connection	≤ 3.7kW	10-16 amps	<20 km	Home & Office
Medium	3-phase AC connection	3.7 -22 kW	16-32 amps	20 – 110 km	Public parking Shopping mall etc
High	3-phase AC connection	> 22 kW	> 32 amps	>110 km	Curb side
High	DC connection	> 22 kW	> 32 amps	>110 km	Motorway

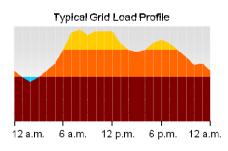
Source: eurelectric

- The majority of user will charge at home (or at work) tariffs. 1
 Phase AC Connection 3,7KW.
- Fast DC Charge 50kW accelerate the EV mobility reducing the "anxiety range"
- Public / semi-public charging infrastructure requires for a positive business case high utilization and innovative business models


Which is the best option for Normal Charge? And for Fast Charge?:

Features

- + Weight
- + Sustainability
- + Cost at EV side or Infrastructure operator side
- + Controllability of the Infrastructure
- + Grid Impact, Power and Quality → THD
- + Efficiency


Power Distributor Grid Operator

Do they have the same needs?

EV User

GRID BALANCING

INDIVIDUAL MOBILITY

- Peace of mind
- Always charging when parking
- Possibility to extend range
- Real Time Information

Source: <u>SELVIRE</u>

Power Distributor Grid Operator

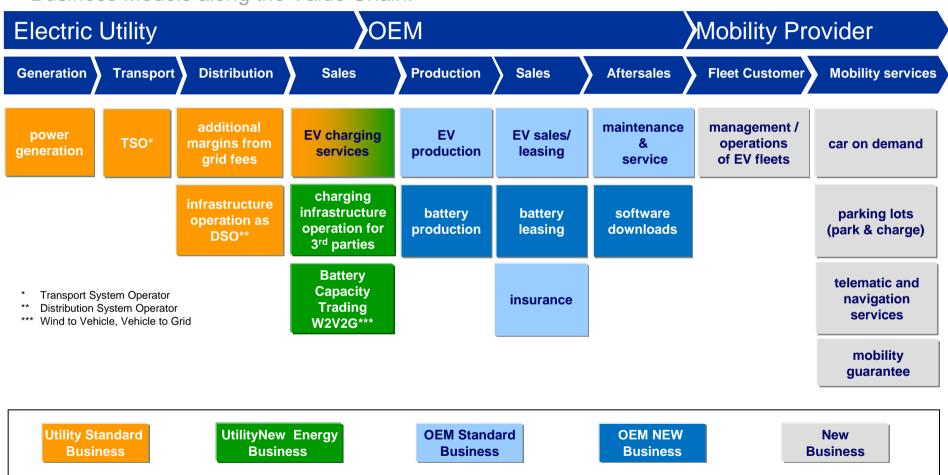
- Grid Balancing
 - Smart Charging
 - V2G Supply
- Roaming
- Optimization of green energy yield

•Mobility Management

NEW BUSINESS

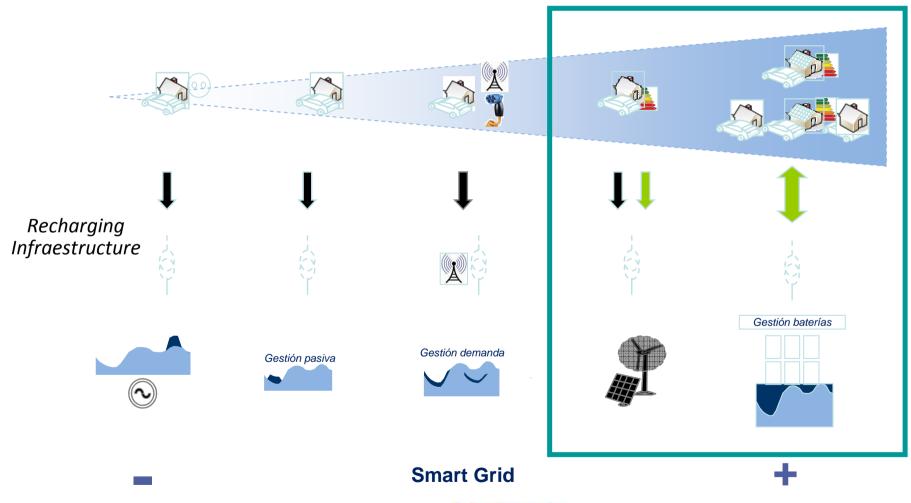
- Energy supply and demand prioritization
- •Charge Infrastructure
- •Battery Financing & Warranty
- •Road Side Assistance
- •Real-Time Information Services
- •Contribution to Standardization
- etc.

EV User

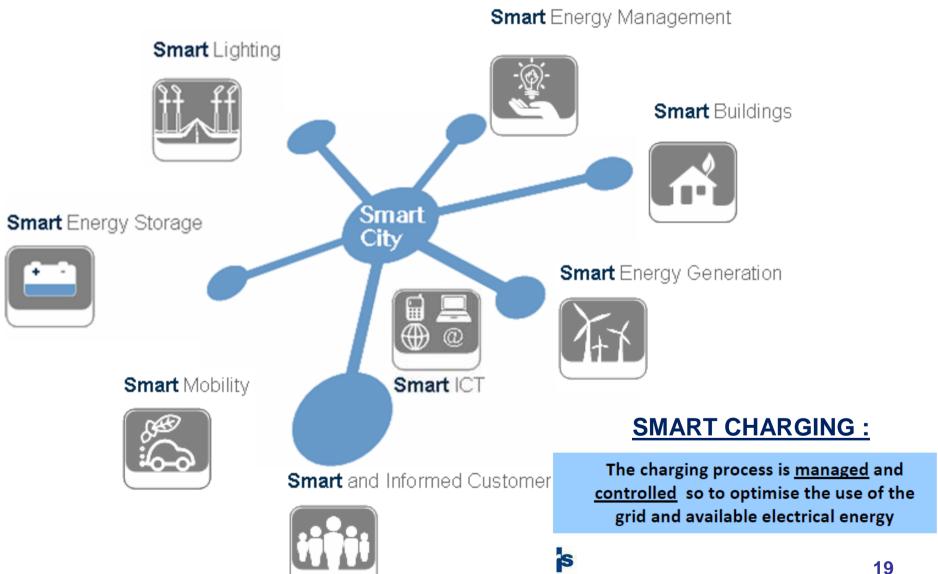

- Deployment of Charge Infrastructure
- Allocation of Charge Sites
- Transmission of Charge Plans
- Smart Charging
- Road-Side-Assistance
- Billing / CRM

Electric Mobility.

Business Models along the Value Chain.



Source: BMW



Evolution of the EV Recharging Infraestructure and the SmartGrids

Malaga Smart City Project

3

Endesa Infrastructure

Key Note:

Endesa has an infrastructure solution for the different market demands.

Private Environments

Public Environments

FAST CHARGE

EV Charging Speed

NORMAL CHARGE

FLEET **MANAGEMENT:**

Fast charging infrastructure is needed in fleets garages, along with normal charge, to allow an optimum charging process for EV use.

RECHARGING **STATIONS:**

Public charging stations, 15 min. charging in public spaces where people cannot wait for too long

HOME AND OFFICE

Offices and private parking, where charging speed is not critical

spaces such as airports, mall

centres, train stations

21

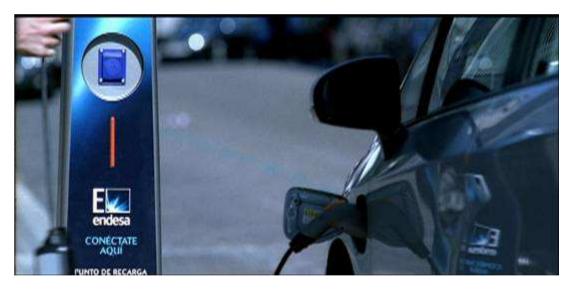
Endesa Infrastructure

ENDESA Recharging Infraestructure

Normal Charge

AC Charging station Mode 3 AC 32 A 400V AC 16 A 230 V

50kW Charging Station:

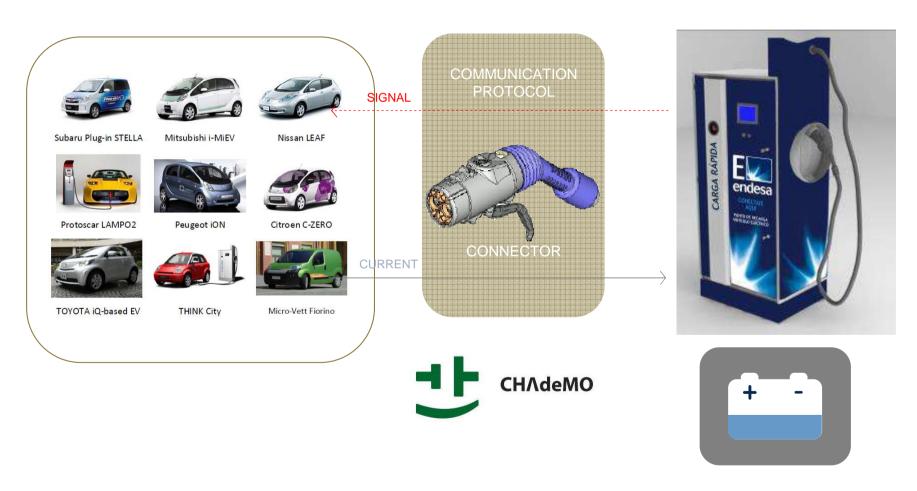

mode 4 DC CHAdeMO 125 A 400 V

Mode 3 AC 23 A 400 V (up to 63 A)

Endesa Infrastructure

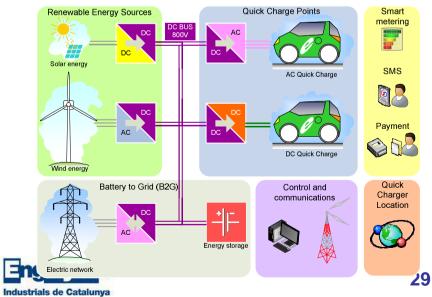
Normal Charge

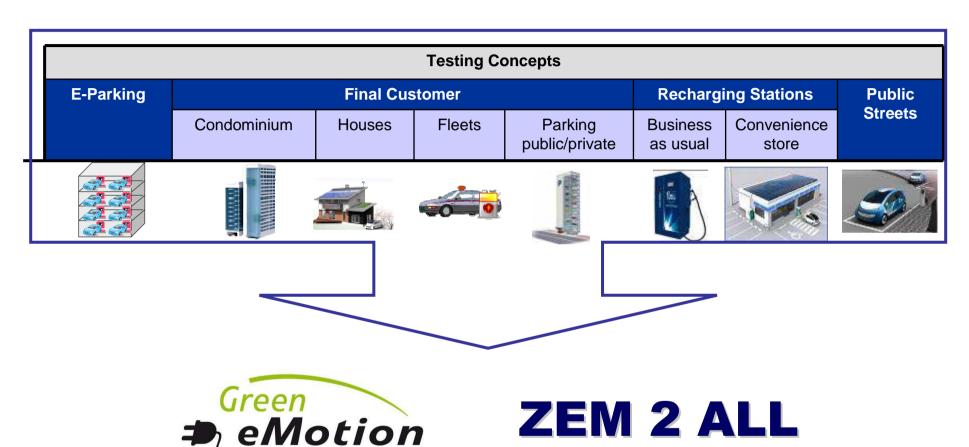
Quick Charge



Identifying a potential Mix of Private and Public Charging Infrastructure Endesa Infrastructure

DC 50kW




Endesa Key E-mobility Projects

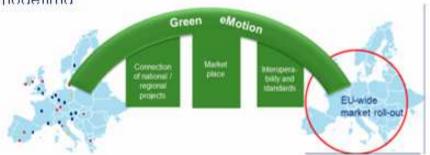
Key Note: High Penetration of EVs is essential to evaluate new e-mobility services

Key Projects

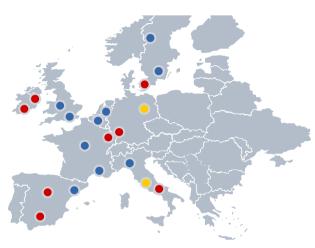
Green eMotion – overall goals

- Demonstrating an integrated European approach to deploy electromobility in the EU, including vehicles, infrastructure, grid, electric vehicles (EV) IT solutions and user acceptance
- Developing and demonstrating an unique and user-friendly framework for green electromobility including:
 - Demonstration of interoperability by integrating various demonstration regions
 - Provide and proof a marketplace for electric vehicle services
 - Develop a baseline for standardization of network and charging infrastructure, vehicle technology and ICT solutions
 - Enable mass deployment of electromobility

The Green-eMotion Partners


Development of an European Framework for Electromobility

PROJECT LENGTH & Present situation	2011 – 2015 Contract Negotiation Phase Project kick-off March 2011		PARTHERS	42 partners from the automotive industry, and energy products industry, cities and research institutions.	
FUNDING	FP7 call TRANSPORT - 2010 TREN		TOTAL BUDGET & EC FUNDING	41.98M €	24.20M €


The creation of a unique and user-friendly framework for green electro mobility in the EU through based on previous, ongoing and further demonstration projects throughout Europe, targeting mainly:

- → Interoperable technology
- > Consumer friendly services and business modelling
- → Sustainable rollout of electric vehicles
- → Assessment of viability of electromobility

National / regional projects

- Proof technology (equipment level)
- Test of operation and billing
- First business models
- Initial local consumer awareness

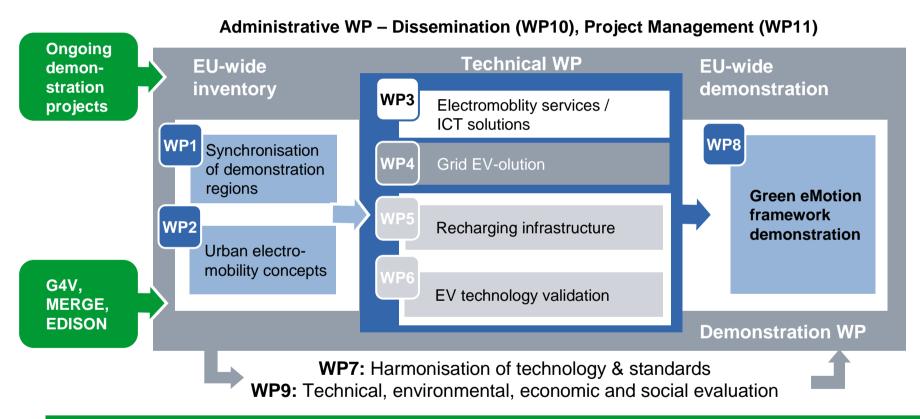
GREEN EMOTION

- Connection of national / regional projects
- Market place
- Interoperability and standards

EU project Green eMotion

- Proof of interoperability
- Future proofing of protocols and interfaces
- Introduction marketplace and advanced services
- Wider consumer awareness and acceptance

Mass market (start)


- Standardised solutions for vehicles infrastructure, network and IT applications available
- Preconditions and user acceptance established

Legislative support
Promoting policies and regulation
Consumer incentives

Development and demonstration of a unique and user-friendly framework for green electro-mobility

Subject: Integrated European demonstration on electro-mobility – Vehicles, infrastructure, grid, IT applications, user acceptance

Endesa Key <u>R&D</u> E-mobility Projects

- Objective:
- Research on <u>fast charge system</u> features a smart grid interface capability to prevent peak loading on the electrical utility.
- Design Integrated <u>energy storage</u> into fast charge stations that could:
 - allow renewable energy sources to store off peak power generation in battery banks for later use.
 - allow the EV charging station to use a smaller electrical service and help prevent peak loading on the utility grid.
 - allow additional utilization as a stored energy resource to the utility grid for possible use during peak demand periods.

- Objective:
- Research, design and implement a testing microgrid platform to evaluate the <u>impact</u> of different EVs configuration and applications on the network.
- Research, design and implement on a new flexible load management system.
- Research design and implementation of a prototype
 V2G DC 10kW-50kW charger and the associated potential services

Thank you very much for your attention!

Barcelona 2011

Santiago Cascante
Santiago.cascante@endesa.es

light · *gas* · *people*

