PORTS

H2Ports Implementing Fuel Cells and Hydrogen Technologies in Ports

Aurelio Lázaro, PhD R&D Energy Transition alazaro@fundacion.valenciaport.com

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 826339. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

WHO WE ARE

Fundación Valenciaport is a centre for **Applied Research, Innovation** and **Training**, serving the port-logistics cluster.

It is an initiative of the Port Authority of Valencia, bringing together key companies, universities and institutions in the port community.

Since its creation, it has developed projects in more than sixty countries, mainly in the Mediterranean, the rest of Europe, Asia and Latin America.

Port of Valencia

Valencia City : 789,744 hab ; Metropolitan area: 1,581,057 hab

The port in figures

77.5 M tonnes. Total Traffic1

5.6 M TEU Container Traffic¹

412 k ITU RoRo Traffic1

31,563² direct or indirect jobs

1.82² billion euros in economic impact (GVA)

¹ Values from 2021² Values from 2016 (update in progress)

Implementing FuelCells and HydrogenPORTSTechnologies in Ports

Clean Hydrogen Partnership

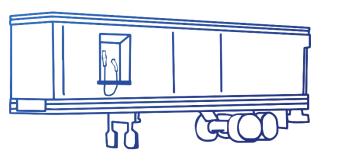
Co-funded by the European Union

Reach Stacker in MSC Terminal

• 2 years / 5000 h of operation

General features

- Total Budget: 4,117,197.5 EUR
- Duration: 2019-2023


Mobile HRS

- Hydrogen supply logistics at ports
- Port regulatory framework
- Safety procedures

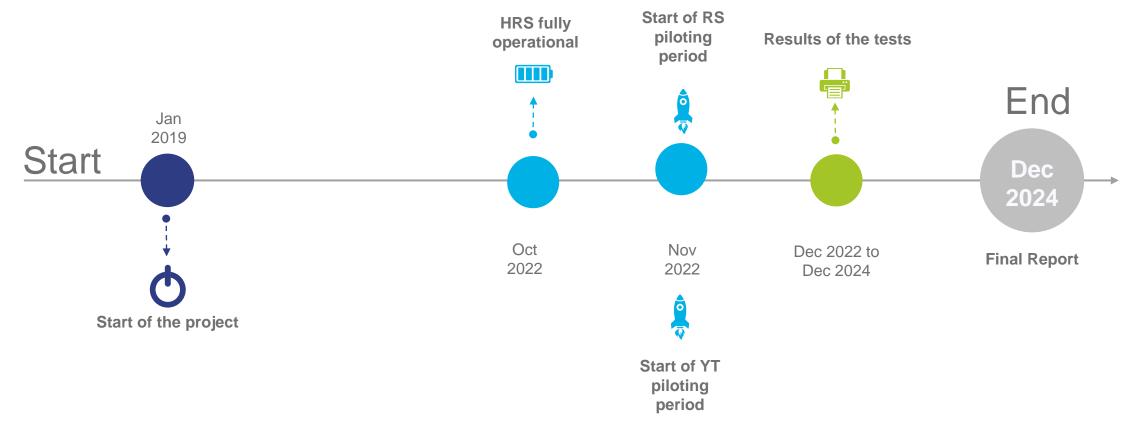
Yard Tractor in Valencia Terminal Europa

• 2 years / 5000 h of operation

First application in Europe of hydrogen technologies for port handling equipment in real operative conditions



Port of Valencia



Co-funded by the European Union PORTS

Clean Hydrogen Partnership

Co-funded by the European Union

Hydrogen supply

Gas Supplier

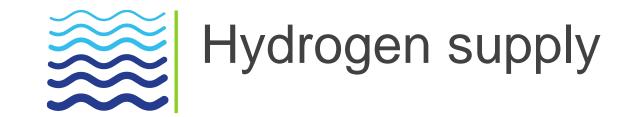
Partnership

Buffer Tank 50 m³; D:2450 L:11510 10-40 bar 180kg

Compressor 50m3/h *p*_{in}:10-40 bar *p*_{out}: 300-450 bar

the European Union

FCHJU


FCHJU funding € 800,000 approx.

National Hydrogen Centre, Carburos Metálicos, Fundación Valenciaport, Valencia Port Authority, MSCTV, Hyster-Yale, Grimaldi, ATENA, Enagás

- Mobile hydrogen refuelling station
- \circ Up to 60 kg of H₂ at 350 bar per day
- Hydrogen flow rate up to 3.6 kg/min
- Storage cascade at 300 and 450 bar use
 in order to save energy



FCHJU funding € 1,300,000 approx.

Hyster-Yale Nederland B.V., MSCTV, Port Authority of Valencia, Fundación Valenciaport, National Hydrogen Centre

Expected achievements

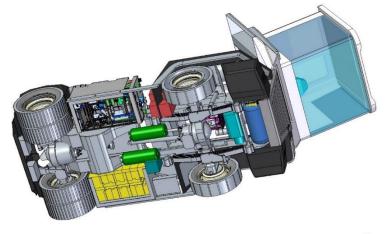
- Average CO₂ reduction of 128,000 kg per year per vehicle (3000 h & 16 L/h)
- \circ Lower TCO
- Improved productivity

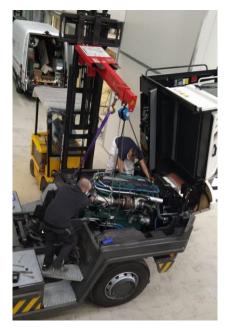
Co-funded by

the European Union

Specifications

	Parameter	Specifications	
Nuvera ® Fuel Cell Engine		E-45-HD	E-60-HD
Performance (Beginning of Life)	Gross output power*	54 kW	67 kW
	Net output power*	45 kW	59 kW **
	Operating voltage	170-290 VDC	180-270 VDC
	Maximum operating current	312.5 A	375 A
Physical	Dimensions (L x W x H)	1000 x 600 x 500 mm	
	Mass	187 kg	190 kg
Operation	Ambient operating temperature	-30oC to 45oC	
	Coolant	De-ionized water or glycol mix	
	Oxidant	Air	
	Fuel quality	SAE J2719 ISO 14687-2	
	Air supply pressure	0.70–1.05 bara	
	Fuel supply pressure	12.5–15.0 bara	
	Input power for balance-of-plant	1.2 kW at 27 VDC 6.0 kW at 375 VDC	1.2 kW at 27 VDC 7.5 kW at 375 VDC
Emissions	Exhaust	Zero emissions (no PM, NOx, SOx, CO, or CO ₂)	


Matan



FCHJU funding € 1,100,000 approx.

ATENA, Grimaldi Group, Ballard, National Hydrogen Centre, Fundacion Valenciaport

Development and deployment a 4x4 Yard Tractor equipped with a Fuel Cells and test it in Valencia Terminal Europa (Grimaldi Group). It involves three tasks:

- Design of the new FCEV YT
- Assembling of new components in the YT
- Testing and Piloting of the FCEV YT in Valencia, Spain

4x4 Terminal Tractor

+

Fuel Cell

Ballard FCmove-HD 70			
Company producing	Ballard Power Systems Inc		
Fuel cell module	Ballard FCmove-HD 70		
Net system power	70 kW		
Operating system current	20-250 A		
Operating system voltage	250-500 VA		
Idle power	8 kW		
Dimensions (I x w x h) including air filter	1783 x 815 x 415 mm		
Weight	250 kg		

Battery Pack:

The battery pack is Lithion Battery P40-24
higher power performance, it is composed
by 24 modules connected in series
configuration, each module having nominal
capacity and voltage of 40 Ah and 25.6V,
and the battery pack allows for a nominal
energy capacity of 24.6 kWh.

Market uptake strategy and risk management

Objectives

Analysis of the technical and financial feasibility of the use Hydrogen Fuel Cells in ports machinery.

Logistics

Define the most adequate logistic chain for supplying hydrogen. Estimate potential agregated demand

Regulatory

Analyse all aspects related to safety. Study the permiting process

Market uptake

Assess the financial feasibility. Propose a path for the introduction of FC in the port maritime sector. Define the most probable implementing scenarios.

Clean Hydrogen Partnership

Co-funded by the European Union

https://h2ports.eu/

J	+ H2PORTS 29 Tweets	
	Implementing Fuel Cells and Hydrogen Technologies in Por	ts
	AND THE	
	PORTS	Seguir
	H2PORTS @H2Ports	

H2PORTS project. Implementing Fuel Cells and Hydrogen Technologies in Ports. Fuel Cells and Hydrogen Joint Undertaking.

📰 Se unió en febrero de 2019

21 Siguiendo 322 Seguidores

Linked in

PORTS

Thank you!

