La nueva criptografía

Antonio Acín
ICREA Professor at ICFO-Institut de Ciencies Fotoniques, Barcelona AXA Chair in Quantum Information Science

Col•legi Oficial d’Enginyers Industrials de Catalunya, Barcelona, 14 May 2019

ICREA

0

Fundació Privada
CELLEX

$\mathrm{ICFO}^{\text { }}$

ICFO at a glance

- Born in 2002
. 400 People
. 26 Research Groups
- $14000 \mathrm{~m}^{2}$

J 60 Research labs
. Mediterranean Technology Park, Castelldefels, Spain
. Programs: Info, Health, Energy
. Facilities: NanoFab, AdvEng, Advlmaging, BioLab, ...
. ICFO+, ICFOnians, ICFO Young Minds, ...
. Mission: Research, Grad Education \& KTT
. $50+$ Nature family pubs; 30 ERCs; 6 spin-off companies

$\mathrm{ICFO}^{\text { }}$

QUANTUM AT ICFO

ICFO researchers are at the forefront of a growing scientific community that is working to understand and harness the power of quantum phenomena in order to usher in revolutionary new quantum technologies and applications.
$\checkmark 14$ groups (11 experimental/ 3 theory)
$\checkmark 150$ researchers
$\checkmark 14$ ERC grants
\checkmark Quantum Info Axa Chair
\checkmark Participation in 7 projects of the QT Flagship (2 as coordinators)
$\checkmark>50$ Nature-group papers
\checkmark A broad range of prototypes
\checkmark Multiple industrial collaborations
\checkmark Participation in Quantum ESA projects
\checkmark QuSide
\checkmark Learn more at http://quantumtech.icfo.eu

ICFO^{7}

QUANTUM AT ICFO

Quantum discoveries at ICFO are at the very forefront of today's research on quantum technologies.

Quantum Machine Learning \& Quantum Algorithms

Quantum Encryption

Quantum Sensors

Quantum Simulators

High performance/Cloud Computing \& experiments

ICFO

Basics of quantum physics

Quantum physics

What happens when we move to the microscopic world?

Newtonian Physics

Quantum Physics

Quantum physics was created at the beginning of the XX century to explain several experiments at the microscopic scale. It radically changed our understanding of nature.

Warning!

I can safely say that nobody understand quantum physics.

Warning!

Richard Feynman
Nobel Prize in Physics (1965)

Basics of quantum physics

First postulate: to each physical system it is associated a complex Hilbert (vector) space. The state of the system is completely described by a normalized vector $|\psi\rangle$ in this space. And every vector in the space is a possible valid state of the system.
$\mathrm{ICFO}^{\text { }}$

Basics of quantum physics

First postulate: to each physical system it is associated a complex Hilbert (vector) space. The state of the system is completely described by a normalized vector $|\psi\rangle$ in this space. And every vector in the space is a possible valid state of the system.

$$
\begin{aligned}
& |\psi\rangle=\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{d}
\end{array}\right) \in C^{d} \\
& \lambda_{j}=a_{j}+i b_{j} \\
& \left|\lambda_{1}\right|+\cdots\left|\lambda_{d}\right|=1
\end{aligned}
$$

Quantum superpositions

ICFO ${ }^{7}$

Quantum superpositions

Quantum superpositions

Vector spaces: the linear combination of two vectors is a new vector \rightarrow a valid state of my physical system!

Quantum superpositions

A quantum system can be in a superposition of two states.

Quantum superpositions

A quantum system can be in a superposition of two states.

Schrodinger's cat

Uncertainty principle

When a system is measured, its state is perturbed.

You may like it or not but... Quantum physics is everyday tested in many different labs worldwide. It is the theory that correctly describes the microscopic world, made of atoms, photons,...

Quantum physics

What happens when we move to the microscopic world?

Newtonian Physics

Quantum Physics

Quantum physics was created at the beginning of the XX century to explain several experiments at the microscopic scale. It radically changed our understanding of nature.

Quantum information theory

What happens when we move information to the quantum world?

Classical information theory

Quantum information theory

The second quantum revolution: we are experiencing a similar process now in the context of information technologies.

Quantum information theory

Quantum physics: formalism that describes nature at the microscopic scale.
(Einstein, Planck, Bohr, Schrödinger, Heisenberg,..., first half of XX century).

Information theory: set of laws describing how to transmit and process information.
(Shannon, 1950).

Why now?

Why now?

We have at our disposal techniques to control the quantum world.

Serge Haroche

David J. Wineland

The Nobel Prize in Physics 2012

Particle control in a quantum world Serge Haroche and David J. Wineland have independently invented and developed methods for measuring and manipulating individual particles while preserving their quantum-mechanical nature, in ways that were previously thought unattainable.

Information technologies

The unstoppable progress in miniaturization has brought us to the scenario in which information is stored on quantum particles (atoms or photons, for example).

Moore's law

Moore's law is not a law but an observation: the number of transistors in an integrated circuit doubles about every two years. The observation is named after Gordon Moore, former CEO of Intel, whose 1965 paper described a doubling every year in the number of components per integrated circuit. Source: Wikipedia.

Microprocessor Transistor Counts 1971-2011 \& Moore's Law

ICFO ${ }^{7}$

EU Flagship on Q Technologies

1 billion in 10 years

Engineering/Control

Education/Training

Basic Science

ICFO ${ }^{7}$

The quantum bit (qubit)

|0〉

ICFO ${ }^{\square}$

The quantum bit (qubit)

|0)
|1)

ICFO ${ }^{\text {² }}$

The quantum bit (qubit)

|0)
|1)

$$
\alpha|0\rangle+\beta|1\rangle
$$

Quantum computation

Classical computer

Quantum computation

Classical computer

The computation can be decomposed into elementary functions: AND, OR, NOT,...

Quantum computation

Quantum computer

Quantum computation

Quantum computer

The computation can be decomposed into elementary unitary operations.

Shor's algorithm

An efficient quantum algorithm for factoring, a problem for which no efficient classical algorithm is known.

Peter Shor

Shor's algorithm

An efficient quantum algorithm for factoring, a problem for which no efficient classical algorithm is known.
$6=$?

Peter Shor

Shor's algorithm

An efficient quantum algorithm for factoring, a problem for which no efficient classical algorithm is known.

$$
6=2 \times 3
$$

Peter Shor

Shor's algorithm

An efficient quantum algorithm for factoring, a problem for which no efficient classical algorithm is known.
$6=2 \times 3$

Peter Shor
$221=$

Shor's algorithm

An efficient quantum algorithm for factoring, a problem for which no efficient classical algorithm is known.
$6=2 \times 3$

Peter Shor
$221=13 \times 17$

Shor's algorithm

An efficient quantum algorithm for factoring, a problem for which no efficient classical algorithm is known.
$6=2 \times 3$
$221=13 \times 17$

Peter Shor

2.160.062.083 =

Shor's algorithm

An efficient quantum algorithm for factoring, a problem for which no efficient classical algorithm is known.
$6=2 \times 3$
$221=13 \times 17$

Peter Shor

2.160.062.083 = 38699×55817

Shor's algorithm

An efficient quantum algorithm for factoring, a problem for which no efficient classical algorithm is known.
$6=2 \times 3$
$221=13 \times 17$
$2.160 .062 .083=38699 \times 55817$

Peter Shor

22601385262034057849416540486101975135080389157197767183211977 68109445641817966676608593121306582577250631562886676970448070 00181114971186300211248792819948748206607013106658664608332798 $2803560379205391980139946496955261=$

Shor's algorithm

An efficient quantum algorithm for factoring, a problem for which no efficient classical algorithm is known.
$6=2 \times 3$
$221=13 \times 17$
$2.160 .062 .083=38699 \times 55817$

Peter Shor

22601385262034057849416540486101975135080389157197767183211977 68109445641817966676608593121306582577250631562886676970448070 00181114971186300211248792819948748206607013106658664608332798 $2803560379205391980139946496955261=$

No efficient classical algorithm is known.

Factoring

Factoring is an easy problem for quantum computers.

Factoring

226013852620340578494165404861019751350803891 571977671832119776810944564181796667660859312 130658257725063156288667697044807000181114971 186300211248792819948748206607013106658664608 $3327982803560379205391980139946496955261=$

686365641226756627438237149928843780013084223 997916484462124499332154106144146426679382136 44208420192054999687

329290743948634981204930154921293529191645519 653623395246268605116929034930946524633378248 66390738191765712603

Cryptography

Quantum secure?

Quantum secure?

A quantum computer could break the most used scheme today for secure encryption!
$\mathrm{ICFO}^{\text { }}$

Quantum cryptography

Alice

Eve

Quantum cryptography

Alice

Eve

The eavesdropper, when measuring the quantum particles, modifies their state and is detected \rightarrow Quantum Secure!!

Quantum cryptography

- Standard cryptography is today based on computational security.
- Assumption: eavesdropper computational power is limited.

Quantum cryptography

- Standard cryptography is today based on computational security.
- Assumption: eavesdropper computational power is limited.
- Even with this assumption, security is unproven. Why do we believe that factoring is hard? We have tried to solve it for decades with no success.
- Is there a proof that factoring is hard? NO! Can we exclude that tomorrow a very smart mathematician will find an algorithm for efficient factorization? NO!

Quantum cryptography

- Standard cryptography is today based on computational security.
- Assumption: eavesdropper computational power is limited.
- Even with this assumption, security is unproven. Why do we believe that factoring is hard? We have tried to solve it for decades with no success.
- Is there a proof that factoring is hard? NO! Can we exclude that tomorrow a very smart mathematician will find an algorithm for efficient factorization? NO!
- Quantum computers sheds doubts on the long-term applicability of some of these schemes: factoring is easy on quantum computers.

Quantum cryptography

- Standard cryptography is today based on computational security.
- Assumption: eavesdropper computational power is limited.
- Even with this assumption, security is unproven. Why do we believe that factoring is hard? We have tried to solve it for decades with no success.
- Is there a proof that factoring is hard? NO! Can we exclude that tomorrow a very smart mathematician will find an algorithm for efficient factorization? NO!
- Quantum computers sheds doubts on the long-term applicability of some of these schemes: factoring is easy on quantum computers.
- Computational security is cheap (software).

Quantum cryptography

- Standard cryptography is today based on computational security.
- Assumption: eavesdropper computational power is limited.
- Even with this assumption, security is unproven. Why do we believe that factoring is hard? We have tried to solve it for decades with no success.
- Is there a proof that factoring is hard? NO! Can we exclude that tomorrow a very smart mathematician will find an algorithm for efficient factorization? NO!
- Quantum computers sheds doubts on the long-term applicability of some of these schemes: factoring is easy on quantum computers.
- Computational security is cheap (software).
- Post-quantum cryptography: design protocols with security based on hard problems for a quantum computer.

Quantum cryptography

- Quantum cryptographic is based on physical (quantum) security.
- The implementation of these schemes is more demanding (hardware).
- Assumption: quantum physics offers a correct description of nature at the microscopic scale.
- To break the protocol, the eavesdropper should hack the physical implementation.
ICFO^{\square}

Crypto today

Computational Security

Quantum Security
ICFO^{\square}

Crypto today

Computational Security

ICFO ${ }^{7}$

Crypto after the Flagship

Computational Security

Quantum Security

