DGNB Certification System

Barcelona October 10, 2011

Contents

Philosophy and Principles

Process and Assessment Methodology

Role of DGNB Auditor

Evaluation Areas and Criteri

Country-specific Adaptation

Benefits of Certification

ESUCO Database

Conclusion

Philosophy and Principles

DGNB Certification System – Philosophy

USP – Unique Selling Point

- Second generation voluntary system
- Based on the entire life cycle of a building and used materials
- Performance instead of individual and specific measures
- Holistic and flexible approach
- Best practice means achievable goals
- Progressive values in the criteria (limit, reference and target values)
- Based on scientific and engineering principles

DGNB Certification System – Principles

- Assessment of LCA and LCC
- Promotion of building performance / quality
- Technical state-of-the-art technology
- Focus on user comfort and wellbeing
- Based on present and future EU directives
- Promotion of integrated design
- Documentation and verification as quality control measures
- Recommended by the German government

Neubau der Behörde für Stadtentwicklung und Umwelt © Sauerbruch Hutton Architects

DGNB Certification System – Setting the benchmark

Setting the benchmark

- Integrated design
- Goal definition in the early stages of design
- State-of-the-art technology
- Intelligent concepts

Relevance of integrated design

Process and Assessment Methodology

Pathway to certification – Overview

Registration of the building with the DGNB Goal definition for building performance according to gold, silver or bronze Pre-certification as marketing tool Assessment during planning and construction phase according to DGNB regulations Evaluation of planning and construction documentation by the DGNB (conformity assessment) Award of the DGNB Certificate

DGNB

Goal definition

- Target value: best practice
- Reference value: state of the art
- Limit value: legal regulations / ~ Construction standards

Evaluation Process

Evaluation process

• What and how is evaluated in a criterion?

Achieved results

• e.g. calculation result such as 1,4 t/a or 300€/m²

Evaluation

• The result is evaluated with points

Weighting

• At criteria and main criteria groups level

Final result

In Gold, Silver or Bronze

DGNB

DGNB

DGNB

Example of evaluation – Criterion 8 "wood"

- At least 50 % of all timber, timber products, and /or timber materials are produced by sustainable forestry. This is verified by an FSC certificate and a corresponding CoC certificate
- Central European or local timber can also be verified by PEFC certification and a corresponding CoC certificate
- Quantification can be determined by a quantity estimate based on the component catalogue for the life cycle assessment (see criterion 01 and others) or for each trade based on the calls for tenders

Evaluation points	
1	Quality level 1
5	Quality level 2
10	Quality level 3

Example of documentation

central present on the South Station Station Station of the second

Example of evaluation – Criterion 24 "outdoor quality"

Indicator	Checklist points
Questions are to be answered "yes" or "no"	yes
Is there a design concept that factors in the integration of necessary technical structures? Technical Structures must be covered on all sides with a camouflage that fits in the overall design concept.	10
Are the plants used indigenous and appropriate for the location?	5
Is there maintenance contract for the plants?	5
Does (do) the surface(s) under evaluation face at least two directions?	5
Is (are) the outdoor area(s) used for socio-cultural purposes?	5
Does (do) the outdoor area(s) help improve the microclimate, for example with greening or light-colored, reflective surfaces?	5

Example of documentation

Example of evaluation – Criterion 30 "Cycling convenience"

Service level depending on the buildings function:

Number of parking spaces:

Description	Checklist points
1 parking space / 80 m ²	50
In compliance with state building code or 1 parking space / 140 m ²	40
In compliance with state building code or 1 parking space / 200 m ²	30
No state building code requirements and < 1 parking space / 200 m ² and a statement is avaiable	10

Configuration of bicycle parking

Example of documentation

Award of the DGNB Certificate

Award of the DGNB Certificate

DGNB ZERTIFIKAT

Objekt	Objektbewertung	Nutzungsprofil
NORDEXFORUM Langenhomer Chaussee 600 24419 Hamburg	Auszeichnung: Gold Gesamterfölkungsgrad: 86,9 % Gesamtrote: 1,27	Neubau Büro- und Verwaltungsgebäude, Version 2008
Bauherr	Architekt (Entwurf)	Auditor
HOCHTIEF Construction AG NL Hamburg	Schenk&Watblinger Architekten	Daniel Keppel HOCHTIEF Construction AG
	Aussteller	
	Prof. M. sc. econ. Manfred Hegger DGNB Präsident	Dr. Christine Lemaitre DGN8 Geschäftsführerin
	Le. heage	a. Jiet

Role of the DGNB Auditor

Role of the DGNB Auditor

Pre-Assessment

- Initial assessment of a project with regard to the DGNB criteria
- If required, joint workshop concerning the certification system with the client, design team and possibly future building users

Pre-Certification

- Definition of tasks and goals (declaration of intent) together with the client and the design team
- Support during the planning process
- Description of the consequences of the individual decisions
- Compilation of documentation for the pre-certification to be submitted to the DGNB

Role of DGNB Auditor

- Certification
 - Coordination of compilation of the validation documents and plausibility check
 - Compilation of documentation for the certification to be submitted to the DGNB

© Fotograf Dietmar Träupmann

Evaluation Areas and Criteria

Evaluation areas

Weighting of areas

Evaluation and award of the certificate

Overview of the DGNB Criteria

- 1 Global warming potential (GWP) \rightarrow Climate change
- 2 Ozone depletion potential (ODP) \rightarrow Hole in ozone layer
- 3 Photochemical ozone creation potential (POCP) \rightarrow Summer smog
- 4 Acidification potential (AP) \rightarrow Forest dieback
- 5 Eutrophication potential (EP) \rightarrow Algae growth
- 6 Local environmental impact
- 8 Sustainable use of resources / wood
- 10 Non-renewable primary energy demand
- 11 Total primary energy demand and proportion of renewable primary energy
- 14 Drinking water demand and waste water volume

15 Land use

- **1** Global warming potential (GWP)
- **2** Ozone depletion potential (ODP)
- **3** Photochemical ozone creation potential (POCP)
- 4 Acidification potential (AP)
- **5** Eutrophication potential (EP)
- 6 Local environmental impact
- 8 Sustainable use of resources / wood
- **10** Non-renewable primary energy demand

11 Total primary energy demand and proportion of renewable primary energy

14 Drinking water demand and waste water volume

15 Land use

LCA – Ecological Footprint of the physical building components in compliance with DIN EN ISO 14040 and 14044.

Incorporates all involved lifecycle stages:

Construction

Operation incl. supply & disposal, maintenance, repairs and replacements
End-of-Life incl. recycling and disposal of all building materials

- 1 Global warming potential (GWP)
- 2 Ozone depletion potential (ODP)
- 3 Photochemical ozone creation potential (POCP)
- 4 Acidification potential (AP)
- 5 Eutrophication potential (EP)
- 6 Local environmental impact
- 8 Sustainable use of resources / wood
- 10 Non-renewable primary energy demand
- 11 Total primary energy demand and proportion of renewable primary energy
- 14 Drinking water demand and waste water volume

15 Land use

The DGNB Certification System determines and evaluates **high-risk material** and substance groups.

- Halogens and halogen bonds
- Heavy metals
- Organic solvents
- Substances and products included in the European Biocidal Products Directive
- Substances and products listed in REACH as harming water, soil, and air or detrimentally affecting or generally endangering the environment

1	Global warming potential (GWP)	Typical ecological
2	Ozone depletion potential (ODP)	criterias:
3	Photochemical ozone creation potential (POCP)	Useage of sustainable wood
4	Acidification potential (AP)	 Reduction of
5	Eutrophication potential (EP)	drinking water demand
6	Local environmental impact	 Reduction of land use
8	Sustainable use of resources / wood	
10	Non-renewable primary energy demand	
11	Total primary energy demand and proportion of renewable primary energy	
14	Drinking water demand and waste water volume	
15	Land use	

Economic Quality

- **16 Building related life-cycle costs**
- **17** Suitability for third-party use

Building-related life-cycle costs are determined at **net present value** over a period of 50 years:

- Selected construction costs
- Selected occupancy costs
- Selected operation costs (supply and disposal, cleaning, operation, inspection and maintenance)
- Selected repair costs

Neue Deutsche Bank-Türme, © Deutsche Bank

Sociocultural and Functional Quality

18	Thermal comfort in the winter	Criteria groups:
19	Thermal comfort in the summer	5
20	Indoor air quality	18-25: Health,
21	Acoustic comfort	comfort, and user well-
22	Visual comfort	beeing
23	User influence on building operation	06.20.
24	Quality of outdoor spaces	26-30: Functionality
25	Safety and security	. anotionally
26	Handicapped accessibility	31-32: Aesthetic
27	Efficient use of floor area	quality
28	Suitability for conversion	
29	Public access	
30	Cycling convenience	
31	Design and urban planning quality trough competition	
32	Integration of public art	

Sociocultural and Functional Quality

- **18 Thermal comfort in the winter**
- **19 Thermal comfort in the summer**
- **20 Indoor air quality**
- 21 Acoustic comfort
- 22 Visual comfort
- 23 User influence on building operation
- 24 Quality of outdoor spaces
- 25 Safety and security
- 26 Handicapped accessibility
- 27 Efficient use of floor area
- 28 Suitability for conversion
- 29 Public access
- 30 Cycling convenience
- 31 Design and urban planning quality trough competition
- 32 Integration of public art

Comfort criterias to evaluate the benefit of the building to the users.

Each criteria includes different indicators such as:

- Operating temperature
- Draughts
- Radiant temperature asymmetry
- Relative humidity

and:

- Availability of daylight in line of sight to the outside
- Lack of glare in daylight and artificial light
- Light distribution
- Color rendering

Example – Criterion 20 "Indoor air quality"

Indoor air concentrations for all of the tested rooms:

VOC [µg/m³]	FORMALDEHYDE [µg/m³]	CHECKLIST POINTS
≤ 500	≤ 60	50
≤ 1000	≤ 60	25
≤ 3000	≤ 120	10
> 3000	> 120	0

VOC: Volatile Organic Compounds

Sociocultural and Functional Quality

- 18 Thermal comfort in the winter
- 19 Thermal comfort in the summer
- 20 Indoor air quality
- 21 Acoustic comfort
- 22 Visual comfort
- 23 User influence on building operation
- 24 Quality of outdoor spaces
- 25 Safety and security
- 26 Handicapped accessibility
- 27 Efficient use of floor area
- 28 Suitability for conversion
- 29 Public access
- 30 Cycling convenience
- 31 Design and urban planning quality trough competition
- 32 Integration of public art

Functional criteria addressing topics of efficiency and flexibiliy.

The suitability for conversion is analyzed on four levels:

- Modularity of the building
- Spatial structure
- Supply of electricity and other media
- Heating, supply and disposal of water

Technical Quality

33	Fire prevention
34	Noise protection, emission controls
35	Building envelope quality
40	Ease of cleaning and maintenance
42	Ease of dismantling and recycling

Technical Quality

33	Fire prevention	
34	Noise protection, emission controls	
35	Building envelope quality	
40	Ease of cleaning and maintenance	
	Ease of cleaning and maintenance Ease of dismantling and recycling	

Requirements are based on the specification of the German Energy Conservation Ordnance, DIN 4108, and DIN EN 12207.

- Median thermal transmittance coefficients of building components
- •Thermal bridge adjustment
- Air permeability class (window airtightness)
- Amount of condensation within the structure
- Air exchange rate n₅₀ and if necessary q₅₀

Process Quality

- 43 Comprehensive project definition
- 44 Integrated planning
- 45 Comprehensive building design
- 46 Sustainable aspects in tender phase
- 47 Documentation for facility management
- 48 Environmental impact of construction site / construction process
- 49 Prequalification of contractors
- 50 Construction quality assurance
- 51 Systematic commissioning

Criteria groups:

43-47: Quality of planning 48-51: Quality of construction

LVM 5 Kristall, © LVM Landwirtschaftlicher Versicherungsverein Münster a.G.

Process Quality

- 43 Comprehensive project definition
- 44 Integrated planning
- 45 Comprehensive building design
- 46 Sustainable aspects in tender phase
- 47 Documentation for facility management
- 48 Environmental impact of construction site / construction process
- 49 Prequalification of contractors
- **50 Construction quality assurance**
- 51 Systematic commissioning

This criterion is assessed by summing up the following two indicators:

- **Documentation** of materials, auxiliary materials, and safety data sheets
- **Measurements** for quality control (e.g. blower door test, thermography, footfall sound tests, indoor air quality measures)

Site Quality

- 56 Site location risks
- 57 Site location conditions
- 58 Public image and social conditions

Access to specific-use facilities

Access to transportation

Connections to utilities

- The criterias include topics such as:
- Avalanches, storm
- Outdoor air quality, outdoor noise
- Soil and building plot
- Upkeep and condition of the neighborhood
- Accessibility of public transport systems
- Existance of use-specific facilities

[©] ECE Projektmanagement GmbH & Co. KG

59

60

61

Country-specific adaptation

Country-specific adaptation

- Market driven demands for one system / more comparability
- Different regions require different solutions

(climate, social, cultural, technical, legal, political, economical)

Hafenspitze (Hotel-Bauteil A) Düsseldorf, © Dejan Saric

Occupancy Profiles

Pilot phase

New Office and Administrative Buildings (NOA2010)

Development

- Residential
- Retail / malls
- Existing Office and Administrative Buildings
- Existing Residential
- Hotels
- • •

Country-specific adaptation

Core System

Comparability

Regional requirements

Adaptation to local conditions

Flexibility

- Possibility to adaptation to local standards and existing local state of knowledge
- Possibility to adaptation to the economic situation and construction standard

Adaptation

- Local partner
- Auditors

Árkád Szeged Shopping Center

NAME	Árkád Szeged Shoppingcenter
LOCATION	Szeged, Hungary
FUNCTION	Shopping Center
GROSS FLOOR AREA	105.000 m ²
STATUS	Under construction, opening Oct. 4, 2011
DEVELOPER	ECE Projectmanagement Budapest Kft.
DESIGNER	Zsolt Gunther, 3h építész iroda

© ECE Projektmanagement Budapest Kft.

Occupancy Profiles

Pilot phase

New Office and Administrative Buildings (NOA2010)

Development

- Residential
- Retail / malls
- Existing Office and Administrative Buildings
- Existing Residential
- Hotels

Benefits of certification

Benefits of DGNB Pre-Certification / Certification

- Higher building performance / quality
- More transparency in planning and construction phase
- Powerful marketing tool
- Improved risk management
- Sustainable planning security
- Higher rents and sale prices
- Better value stability
- Decreased risk of vacancy
- Sustainable real estate portfolio

Z-Zwo Bürogebäude Stuttgart-Möhringen

ESUCO Database

ESUCO - European SUstainable COnstruction database

- Roots in the German Ökobau-Database based on EPD (prEN 15804)
- Part of the DGNB International System
- Contains environmental data on over 500 construction materials (i.e. concrete, timber, plastics, metals, binders, stones etc.)
- Contains country specific data on the use stage of buildings as heating, cooling, electricity and services such as elevators in buildings etc.
- Production technology of core materials is based on European average industry data
- All data on resources, energy and preliminary products are adapted to European average conditions

- Environmental indicators

Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe				
💽 🗸 😧 👔 👔 🖓 🕞 file:///C:/Dokumente und Einstellungen/braune/Desktop/BOX/ESUCO 1/E3		m_(dried).xml 🏠 🗝	Google	
ICE CRM-Groupwar 📋 DGNB Navigator - Tool 📄 Meistbesuchte Seiten 📕 Explorer Hotel - Highs 🚥	GMX - E-Mail, FreeMail 📋 Erste Schritte 🔊 Aktu	ielle Nachrichten 🚺 Deutsche	Bank Online morgueFile Fi	ee photo
Datensatz: EU: 1.2.01 Sand grain 0-2 +				
Indikator	Richtung	Wert	Einheit	Anteile
Inputs				
Primary energy non-renewable	Input	0,485 MJ		
- Lignite				1 %
- Hard coal				2 %
- Natural gas				90 %
- Crude oil				4 %
- uranium				4 %
Primary energy renewable	Input	0,00306 MJ		
- hydro power				72 %
- wind power				15 %
- Solar radiation (solar energy)				13 %
- Sun use (biomass)				0 %
secondary fuels	Input	2,89E-7 MJ		
water utilization	Input	0,0609 kg		
Outputs				
overburden and ore processing residues	Output	0,574 kg		
municipal waste	Output	6,092E-9 kg		
Hazardous waste	Output	6,48E-6 kg		
idikatoren der Wirkbilanz				
Indikator		Wert	Einheit	
Abiotic Depletion Potential (ADP)	Input	0,000225 kg \$	Sb-Equiv.	
Global Warming Potential (GWP)	Output	0,029 kg (CO2-Equiv.	
Acidification potential (AP)	Output	5,35E-5 kg \$	SO2-Equiv.	
Photochemical Ozone Creation Potential (POCP)	Output	5,088E-6 kg l	∃thene-Equi∨.	
Eutrification potential (EP)	Output	6,45E-6 kg l	°hosphate-Equi∨.	
Ozone Depletion Potential	Output	4,87E-10 kg l	R11-Equiv.	

Fertia

Name	Größe Typ Geänd			
EU_1.1.02_Lime_hydrate_(Ca_(OH)2)	20 KB XML-Dokument 04.05.2			
EU_1.1.3_Anhydrite_Mix_(CaSO4)	19 KB XML-Dokument 04.05.2			
EU_1.1.03_Anhydrite_Mix_(thermal)	19 KB VML-Dolument 04 05 2			
EU_1.1.03_Gypsum_(CaSO4-alpha-hemi	🕑 Datensatz: 3.2.6 Spanplatte Eurospan - Egger; 669 kg/m3 (de) - Mozilla Firefox			
EU_1.1.03_Gypsum_dihydrate	🏹 🖸 🗙 🏠 🗋 file:///C./Dokumente und Einstellungen/Braune/Desktop/Bau/EPD-VML_September2009_neu/EPD-VML_September2009/data/processes/3.2.6_Spanplal 🏠 🚽 🚷 Google 🔎			
EU 1.1.04 Adobe	🙍 Meistbesuchte Seiten 🗋 Kostenlose Hotmail 🗋 Links anpassen 🗳 Windows Media 🗋 Windows			
EU_1.1.04_Clay_powder	Datensatz: 3.2.6 Spanplatte Eurospa			
EU1.2.01_Gravel_grain_2-32_mm_(dried)	Datensatz: 3.2.6 Spanplatte Eurospan - Egger; 669 kg/m3 (de)			
EU_1.2.01_Sand_grain_2-32_mm	Inhalt: Datensatzinformation - Modellierung und Validierung - Umweltindikatoren Datensatzinformation			
EU_1.2.01_Sand_grain_0-2_mm_(dried)	Kerninformation des Datensatzes			
EU_1.2.01_3and_grain_0-2_mm_(dried)	Geographische DE			
	Referenziahr 2007			
EU_1.2.02_Crushed_sand_grain_0-2_m	Name Basisname, Technische Kennwerte/ Eigenschaften			
EU_1.2.02_Rubble_grain_16-32_mm	3.2.6 Spanplatte Eurospan - Egger, 669 kg/m3			
PIL_1.2.02_Robble_grain_16_02_mm_(dri	Technisches Holzwerkstoff für nichttragende Innenanwendungen im Trockenbereich - 610 bis 750 kg/m3			
EU_1.2.02_Stone_chips_grain_2-15_mm	Fluss Spanplatte (Egger, m3)			
EU_1.2.02_Scone_chips_grain_2-15_MM	Kerninformation des 1 m3 (Volumen) Datensatzes			
EU_1.2.03_Lava_gravel	Anwendungshinweis für Datensatz Datenerhebungen der Industrie. Der Cradie to gate-Datensatz beinhaltet die CO2-Aufnahme im Wald. Es muss zwingend immer ein entsprechendes			
EU_1.2.03_Pumice_sand	End-of-Life-Szenario (Verbrennung, Verrottung, Deponie) für eine vollständige Ökobilanz ergänzt werden. Im Falle der Verbrennung ist der Datensatz			
EU_1.2.03_Washing_pumice	"EoL Spanplatte Eurospan (Egger)" zu verwenden. Gliederung Klassifizierung / Ebene / Ebene			
EU_1.2.05_Expanded_slate	Produktgruppe () Prozesse / 3 Holz / 3.2 Holzwerkstoff / 3.2.6 Spanplatten			
EU_1.2.06_Expanded_glass	Urheberrecht? Ja Eigner des Datensatzes (contact data set) Egger			
🔮 EU1.2.08_Hard_coal_fly_ash	Quantitative Referenz			
EU_1.2.08_Melting_chamber_granulate	Referenzfluss (Name und Spanplatto (Eagor m2) m2 () (olumon)			
EU_1.3.05_Concrete_bricks	18 KB XML-Dokument 04.05.2			
EU_1.3.05_Concrete_pipe,_not_reinforced	19 KB XML-Dokument 04.05.2			
EU1.3.05_Concrete_pipe, _reinforced	19 KB XML-Dokument 04.05.2			
EU_1.3.05_Prefabricated_concrete_ceilin	19 KB XML-Dokument 04.05.2			
EU_1.3.05_Prefabricated_concrete_ceilin	19 KB XML-Dokument 04.05.2			
EU_1.3.05_Prefabricated_concrete_stair	18 KB XML-Dokument 04.05.2			
EU_1.3.05_Prefabricated_concrete_wall,	18 KB XML-Dokument 04.05.2			
	18 KB XML-Dokument 04.05.2			
	18 KB XML-Dokument 04.05.2			

Why do we need country-specific data?

- The **production** of construction materials differs from country to country
- In different countries different **materials** are used for building construction.
- The **technology** of material production differs from country to country
- The regional **energy** demand on heating and cooling cannot be compared
- The country specific electricity and the fuels have different impacts on the environment

Conclusion

Conclusion on the DGNB Certification System

- Benefits of integrated design
- More than "GREEN"
- Flexibility
- Made in Germany

Win-Win Situation

- Reduced life-cycle costs
- Pay off in the long term: resource, energy and emission savings
- User satisfation: more comfort, healthier environment
- Competitive, public image advantages

Rhein-Galerie Ludwisghafen 2

Neubau Zentralgebäude Leuphana Universität Lüneburg Rendering von screen ID digital, Entwurf Universität Lüneburg Prof. Daniel Libeskind

THANK YOU.

www.dgnb-international.com www.dgnb.de

Michael Dax Director International System m.dax@dgnb.de +49 711/722-322-74